

(19) 32SI 101S www.elitecampinas.com.br

PROFESSOR DANILO

FÍSICA MODERNA - TEORIA DA RELATIVIDADE - TERCEIRO ANO -

FOLHA 16

EXERCÍCIOS

01. (Ufrgs 2019) Na coluna da esquerda, estão listados eventos ou situações físicas; na da direita, grandes áreas das teorias físicas.

Descrição de sistemas que envolvam objetos que se movam com velocidades próximas da velocidade da luz.	(a) Física Clássica
2. Descrição de fenômenos que ocorrem em dimensões muito pequenas, como as de um átomo.	(b) Física Quântica
Unificação da Eletricidade e Magnetismo, conforme realizada por Maxwell.	(c) Física Relativística

A alternativa que relaciona corretamente o evento ou situação com a área usada para descrevê-lo é

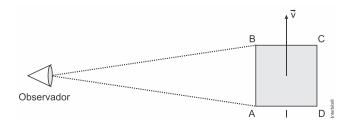
- a) 1(a), 2(b) e 3(c).
- b) 1(a), 2(c) e 3(b).
- c) 1(b), 2(c) e 3(a).
- d) 1(c), 2(a) e 3(b).
- e) 1(c), 2(b) e 3(a)

01. E

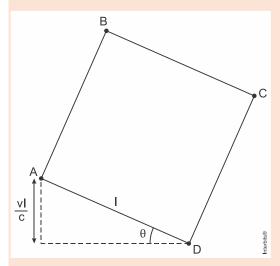
A Física Relativística descreve sistemas em que objetos se movimentam próximos à velocidade da luz [1(c)], enquanto que a descrição de fenômenos que ocorrem em dimensões muito pequenas está relacionado à Física Quântica [2(b)] e a unificação da eletricidade e do magnetismo é abordada na Física Clássica [3(a)].

- 02. (Upf 2019) A teoria da relatividade restrita (TRR), também conhecida como teoria de relatividade especial, foi proposta por Albert Einstein em 1905. Sobre essa teoria, é correto afirmar:
- a) A TRR afirma que as leis da Física são idênticas em relação a qualquer sistema referencial inercial.
- b) A TRR afirma que a velocidade da luz no vácuo é a mesma, independentemente do tipo de sistema de referência em que ela
- c) A TRR é válida em todos tipos de sistemas de referencia.
- d) Para a TRR, não é possível a contração do espaço.
- e) Na TRR, não é possível a dilatação do tempo.

02. A


A TRR afirma que "todas as leis da natureza são as mesmas em todos os sistemas de referência inerciais (sistemas de referência não-acelerados)", sendo, portanto, correta a alternativa [A].

TEXTO PARA A PRÓXIMA QUESTÃO: Quando precisar use os seguintes valores para as


constantes:

Aceleração da gravidade $g = 10 \text{ m/s}^2$, permeabilidade magnética do vácuo $\mu_0 = 4\pi \times 100^{-7} N/A^2$, massa molar do neônio $M_{Ne} = 20 \, g/mol$ e massa molar do nitrogênio gasoso $M_{N_0} = 28 \ g/mol$.

03. (Ita 2019) Uma placa quadrada de vértices A, B, C, D e lado ℓ , medido em seu referencial de repouso, move-se em linha reta com velocidade de módulo v, próximo ao da velocidade da luz no vácuo c, em relação a um observador localizado a uma distância muito maior que ℓ , conforme ilustra a figura. A imagem percebida pelo observador é formada a partir dos raios de luz que lhe chegam simultaneamente. Sabe-se que o movimento da placa faz com que o observador a perceba girada. Determine em função de v e c o ângulo de giro aparente da placa e indigue o seu sentido. sabendo que esta e o observador se situam num mesmo plano.

03. O observador enxerga a luz oriunda do ponto D com um atraso de I/c em relação a luz oriunda do ponto A. Desse modo, há uma defasagem de vI/c na distância vertical percorrida por esses dois pontos. Tal situação pode ser representada pelo esquema seguinte:

Portanto, o ângulo de giro aparente θ será dado por:

$$sen\theta = \frac{vI/c}{I}$$

$$\therefore \theta = arcsen\left(\frac{v}{c}\right)$$

www.**eritecampinas**.com.br

PROFESSOR DANILO

FÍSICA MODERNA – TEORIA DA RELATIVIDADE – TERCEIRO ANO – 23/09/2019

- **04.** (Ufrgs 2018) Dilatação temporal e contração espacial são conceitos que decorrem da
- a) Teoria Especial da Relatividade.
- b) Termodinâmica.
- c) Mecânica Newtoniana.
- d) Teoria Atômica de Bohr.
- e) Mecânica Quântica.

04. A

A dilatação do tempo e a contração do espaço são conceitos decorrentes da Relatividade, portanto a resposta correta é da letra [A].

05. (Fgv 2018) Os avanços tecnológicos que a ciência experimentou nos últimos tempos nos permitem pensar que, dentro em breve, seres humanos viajarão pelo espaço sideral a velocidades significativas, se comparadas com a velocidade da luz no vácuo.

Imagine um astronauta terráqueo que, do interior de uma nave que se desloca a uma velocidade igual a 60% da velocidade da luz, avista um planeta. Ao passar pelo planeta, ele consegue medir seu diâmetro, encontrando o valor $4.8 \cdot 10^6 \ m$. Se a nave parasse naquelas proximidades e o diâmetro do planeta fosse medido novamente, o valor encontrado, em $10^6 \ m$, seria de

- a) 2,7.
- b) 3,6.
- c) 6,0.
- d) 7,5.
- e) 11,0.

05. C

Comparando os diâmetros através da Teoria da Relatividade, temos:

$$d = d_0 \sqrt{1 - \left(\frac{v}{c}\right)^2}$$

$$4.8 \cdot 10^6 = d_0 \sqrt{1 - (0.6)^2}$$

$$4.8 \cdot 10^6 = d_0 \cdot 0.8$$

$$d_0 = 6 \cdot 10^6 \ m$$

- **06.** (G1 col. naval 2017) Com relação aos conceitos da Física, assinale a opção correta.
- a) Em qualquer meio de transparente, a propagação da luz ocorre sempre em linha reta.
- b) A patinação sobre o gelo acontece porque o aumento da pressão, exercida pelos patins, altera a temperatura de fusão do gelo.
- c) As garrafas e outros objetos jogados no mar chegam até as praias transportados pelas ondas.
- d) No processo de eletrização por contato, o corpo que recebe elétrons fica negativo e o que perde elétrons fica positivo.
- e) As bússolas magnéticas são muito importantes na navegação porque apontam precisamente para o norte geográfico.

06. E

[A] Incorreta. A relatividade de Einstein provou que a luz pode se curvar ao passar próxima de um corpo celestial muito massivo como o Sol.

[B] Correta. Os patins possuem uma área de contato com o solo muito pequena, resultando em aumento de pressão no local do contato, derretendo o gelo e solidificando em seguida devido à temperatura do gelo estar abaixo do ponto de congelamento para o local.

[C] Incorreta. As ondas não transportam matéria e sim energia.

[D] Incorreta. Na eletrização por contato os dois corpos ficam com o mesmo sinal de carga, podendo ficar negativo e ceder elétrons ou ainda ficar positivo recebendo elétrons, para os casos de corpo negativo com neutro e corpo positivo com neutro respectivamente. [E] Incorreta. As bússolas não apontam com precisão para o norte geográfico e sim aproximadamente.

07. (Udesc 2017) Os pesquisadores do projeto LIGO (*Laser Interferometer Gravitacional-Wave Observatory*) anunciaram, no início deste ano, a primeira detecção das ondas gravitacionais.

Analise as proposições em relação à informação.

- I. Estas ondas se propagam com a mesma velocidade da luz.
- II. Estas ondas se propagam com velocidade superior à velocidade da luz.
- III. Estas ondas foram previstas por Albert Einstein em sua Teoria da Relatividade Geral.
- IV. Estas ondas foram previstas por Albert Einstein em sua Teoria do Efeito Fotoelétrico.

Assinale a alternativa correta.

- a) Somente a afirmativa III é verdadeira.
- b) Somente as afirmativas I e IV são verdadeiras.
- c) Somente as afirmativas I e III são verdadeiras.
- d) Somente a afirmativa IV é verdadeira.
- e) Somente as afirmativas II e IV são verdadeiras.

07. C

- [I] Verdadeira. As ondas gravitacionais se propagam com a velocidade da luz.
- [II] Falsa. Nenhuma velocidade do universo supera a velocidade da luz no vácuo.
- [III] Verdadeira. Tal detecção confirmou o que já estava previsto na Teoria da Relatividade Geral de Einstein.
- [IV] Falsa. A teoria correta foi enunciada na resposta do item acima.

(19) 32SI 101S www.elitecampinas.com.br

PROFESSOR DANILO

FÍSICA MODERNA - TEORIA DA RELATIVIDADE - TERCEIRO ANO - 23/09/

08. (Fgv 2017) A nave "New Horizons", cuja foto é apresentada a seguir, partiu do Cabo Canaveral em janeiro de 2006 e chegou bem perto de Plutão em julho de 2015. Foram mais de 9 anos no espaço, voando a 21 km/s. É uma velocidade muito alta para nossos padrões agui na Terra, mas muito baixa se comparada aos 300.000 km/s da velocidade da luz no vácuo.

(http://goo.al/oeSWn)

Considere uma nave que possa voar a uma velocidade igual a 80% da velocidade da luz e cuja viagem dure 9 anos para nós. observadores localizados na Terra.

Para um astronauta no interior dessa nave, tal viagem duraria cerca de

- a) 4,1 anos.
- b) 5,4 anos.
- c) 6.5 anos.
- d) 15 anos.
- e) 20,5 anos.

08. B

Para calcular o tempo próprio para o astronauta dentro da nave, consideramos a Teoria da Relatividade em que trata de um tema muito pitoresco que é o paradoxo dos gêmeos. Este paradoxo fala que ao se separar os gêmeos, fazendo um viajar numa espaçonave a velocidades próximas a da luz enquanto o outro fica na Terra, quando encerrar a viagem e eles se encontrarem novamente, o tempo para quem ficou na Terra sofreu uma dilatação sentida pela idade aparente dos dois gêmeos. Esse paradoxo é conhecido como a Dilatação do Tempo.

O cálculo baseia-se na equação:

$$\Delta t = \frac{\Delta t'}{\sqrt{1 - v^2/c^2}}$$

Onde,

 $\Delta t = \acute{e}$ o intervalo de tempo no referencial da Terra

 $\Delta t' = \acute{e}$ o intervalo de tempo para o astronauta

v = é a velocidade da nave em relação a velocidade da luz

 $c = \acute{e}$ a velocidade da luz

$$\Delta t = \frac{\Delta t'}{\sqrt{1 - v^2/c^2}} \Rightarrow 9 = \frac{\Delta t'}{\sqrt{1 - (0.8c)^2/c^2}} \therefore \Delta t' = 9\sqrt{0.36} = 5.4 \text{ anos}$$

09. (Upf 2017) Em relação à teoria da relatividade restrita, formulada por Einstein, é correto afirmar:

- a) Estuda os fenômenos relativos a referenciais inerciais.
- b) As leis da Física são diferentes quando mudamos de um referencial inercial para outro.
- c) Em um sistema de referência inercial, a velocidade da luz, medida no vácuo, depende da velocidade com a qual se move o observador.
- d) O tempo é uma grandeza absoluta.
- e) Os referenciais inerciais são referenciais que se movem, uns em relação aos outros, com velocidade variável.

09. A

O termo teoria da relatividade restrita, significa que a teoria se aplica apenas a referenciais inerciais, que são aqueles em que a Primeira Lei de Newton (Princípio da Inércia) é válida.

10. (Ufif-pism 3 2017) A velocidade é uma grandeza relativa, ou seja, a sua determinação depende do referencial a partir do qual está sendo medida. A Teoria da Relatividade Especial, elaborada em 1905, pelo físico alemão Albert Einstein, afirma que o comprimento e a massa de um objeto são grandezas que também dependem da velocidade e, consequentemente, são relativas.

Sobre a Teoria da Relatividade Especial, julgue os itens abaixo e marque a alternativa CORRETA.

- I. A massa de um objeto é independente da velocidade do mesmo, medida por qualquer referencial inercial.
- II. A velocidade da luz é um limite superior para a velocidade de qualquer objeto.
- III. Intervalos de tempo e de espaço são grandezas absolutas e independentes dos referenciais.
- IV. As leis da Física são as mesmas em todos os sistemas de referência inercial.
- V. Massa e energia são quantidades que não possuem nenhuma relação
- a) somente II e III estão corretas.
- b) somente I e II estão corretas.
- c) somente I e V estão corretas.
- d) somente I e III estão corretas.
- e) somente II e IV estão corretas.

10. F

[I] Incorreta. A massa é relativa e depende da velocidade. Sendo m_0 a massa de repouso do objeto, v a sua velocidade e c a velocidade da luz no vácuo, a massa m do objeto é:

$$m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$

[II] Correta.

[III] Incorreta. Tempo e espaço são grandezas relativas dadas, respectivamente, pelas expressões:

$$t = \frac{t_0}{\sqrt{1 - \frac{v^2}{c^2}}} \text{ e } L = L_0 \sqrt{1 - \frac{v^2}{c^2}}.$$

[IV] Correta.

[V] Incorreta. Massa e energia estão relacionadas pela equação de Einstein: $E = mc^2$.

www.**eritecampinas**.com.br

PROFESSOR DANILO

FÍSICA MODERNA – TEORIA DA RELATIVIDADE – TERCEIRO ANO – 23/09/2019

TEXTO PARA A PRÓXIMA QUESTÃO:

Leia o texto a seguir e responda à(s) questão(ões).

O tempo nada mais é que a forma da nossa intuição interna. Se a condição particular da nossa sensibilidade lhe for suprimida, desaparece também o conceito de tempo, que não adere aos próprios objetos, mas apenas ao sujeito que os intui.

KANT, I. *Crítica da razão pura*. Trad. Valério Rohden e Udo Baldur Moosburguer.

São Paulo: Abril Cultural, 1980. p. 47. Coleção Os Pensadores.

11. (Uel 2017) A questão do tempo sempre foi abordada por filósofos, como Kant. Na física, os resultados obtidos por Einstein sobre a ideia da "dilatação do tempo" explicam situações cotidianas, como, por exemplo, o uso de GPS.

Com base nos conhecimentos sobre a Teoria da Relatividade de Einstein, assinale a alternativa correta.

- a) O intervalo de tempo medido em um referencial em que se empregam dois cronômetros e dois observadores é menor do que o intervalo de tempo próprio no referencial em que a medida é feita por um único observador com um único cronômetro.
- b) Considerando uma nave que se movimenta próximo à velocidade da luz, o tripulante verifica que, chegando ao seu destino, o seu relógio está adiantado em relação ao relógio da estação espacial da qual ele partiu.
- c) As leis da Física são diferentes para dois observadores posicionados em sistemas de referência inerciais, que se deslocam com velocidade média constante.
- d) A dilatação do tempo é uma consequência direta do princípio da constância da velocidade da luz e da cinemática elementar.
- e) A velocidade da luz no vácuo tem valores diferentes para observadores em referenciais privilegiados.

11. D

Análise das alternativas:

- [A] **Falsa:** Na relatividade de Einstein, o intervalo de tempo medido em um móvel que se move a grandes velocidades é menor em relação a um observador em um referencial inercial. Logo, é necessário ter movimento relativo entre os dois observadores para haver diferenças significativas nos cronômetros.
- [B] Falsa: Neste caso, o relógio do tripulante estaria atrasado em relação ao relógio da estação espacial.
- [C] **Falsa:** As leis da Física são imutáveis para dois observadores localizados em referenciais inerciais que se movem com velocidades médias constantes.
- [D] Verdadeira.
- [E] **Falsa:** A velocidade da luz é constante no vácuo e independe dos referenciais pela qual é observada.